Papers
Topics
Authors
Recent
Search
2000 character limit reached

Balancing Selection Pressures, Multiple Objectives, and Neural Modularity to Coevolve Cooperative Agent Behavior

Published 24 Mar 2017 in cs.NE | (1703.08577v1)

Abstract: Previous research using evolutionary computation in Multi-Agent Systems indicates that assigning fitness based on team vs.\ individual behavior has a strong impact on the ability of evolved teams of artificial agents to exhibit teamwork in challenging tasks. However, such research only made use of single-objective evolution. In contrast, when a multiobjective evolutionary algorithm is used, populations can be subject to individual-level objectives, team-level objectives, or combinations of the two. This paper explores the performance of cooperatively coevolved teams of agents controlled by artificial neural networks subject to these types of objectives. Specifically, predator agents are evolved to capture scripted prey agents in a torus-shaped grid world. Because of the tension between individual and team behaviors, multiple modes of behavior can be useful, and thus the effect of modular neural networks is also explored. Results demonstrate that fitness rewarding individual behavior is superior to fitness rewarding team behavior, despite being applied to a cooperative task. However, the use of networks with multiple modules allows predators to discover intelligent behavior, regardless of which type of objectives are used.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.