Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cohen-Macaulay modules over the algebra of planar quasi-invariants and Calogero-Moser systems (1703.01762v4)

Published 6 Mar 2017 in math.AG, math-ph, math.MP, and math.RT

Abstract: In this paper, we study properties of the algebras of planar quasi-invariants. These algebras are Cohen-Macaulay and Gorenstein in codimension one. Using the technique of matrix problems, we classify all Cohen-Macaulay modules of rank one over them and determine their Picard groups. In terms of this classification, we describe the spectral modules of the planar rational Calogero-Moser systems. Finally, we elaborate the theory of the algebraic inverse scattering method, computing a new unexpected explicit example of a deformed Calogero-Moser system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.