Stable categories of Cohen-Macaulay modules and cluster categories
Abstract: By Auslander's algebraic McKay correspondence, the stable category of Cohen-Macaulay modules over a simple singularity is equivalent to the $1$-cluster category of the path algebra of a Dynkin quiver (i.e. the orbit category of the derived category by the action of the Auslander-Reiten translation). In this paper we give a systematic method to construct a similar type of triangle equivalence between the stable category of Cohen-Macaulay modules over a Gorenstein isolated singularity $R$ and the generalized (higher) cluster category of a finite dimensional algebra $\Lambda$. The key role is played by a bimodule Calabi-Yau algebra, which is the higher Auslander algebra of $R$ as well as the higher preprojective algebra of an extension of $\Lambda$. As a byproduct, we give a triangle equivalence between the stable category of graded Cohen-Macaulay $R$-modules and the derived category of $\Lambda$. Our main results apply in particular to a class of cyclic quotient singularities and to certain toric affine threefolds associated with dimer models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.