Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factors of alternating sums of powers of $q$-Narayana numbers (1703.00003v1)

Published 28 Feb 2017 in math.NT and math.CO

Abstract: The $q$-Narayana numbers $N_q(n,k)$ and $q$-Catalan numbers $C_n(q)$ are respectively defined by $$ N_q(n,k)=\frac{1-q}{1-qn}{n\brack k}{n\brack k-1}\quad\text{and}\quad C_n(q)=\frac{1-q}{1-q{n+1}}{2n\brack n}, $$ where ${n\brack k}=\prod_{i=1}{k}\frac{1-q{n-i+1}}{1-qi}$. We prove that, for any positive integers $n$ and $r$, there holds \begin{align*} \sum_{k=-n}{n}(-1){k}q{jk2+{k\choose 2}}N_q(2n+1,n+k+1)r \equiv 0 \pmod{C_n(q)}, \end{align*} where $0\leqslant j\leqslant 2r-1$. We also propose several related conjectures.

Summary

We haven't generated a summary for this paper yet.