A congruence involving harmonic sums modulo $p^αq^β$ (1503.02798v2)
Abstract: In 2014, Wang and Cai established the following harmonic congruence for any odd prime $p$ and positive integer $r$, \begin{equation*} Z(p{r})\equiv-2p{r-1}B_{p-3} ~(\bmod ~ p{r}), \end{equation*} where $ Z(n)=\sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}{n}}}\frac{1}{ijk}$ and $\mathcal{P}{n}$ denote the set of positive integers which are prime to $n$. In this note, we obtain a congruence for distinct odd primes $p,~q$ and positive integers $\alpha,~\beta$, \begin{equation*} Z(p{\alpha}q{\beta})\equiv 2(2-q)(1-\frac{1}{q{3}})p{\alpha-1}q{\beta-1}B_{p-3}\pmod{p{\alpha}} \end{equation*} and the necessary and sufficient condition for \begin{equation*} Z(p{\alpha}q{\beta})\equiv 0\pmod{p{\alpha}q{\beta}}. \end{equation*} Finally, we raise a conjecture that for $n>1$ and odd prime power $p{\alpha}||n$, $\alpha\geq1$, \begin{eqnarray} \nonumber Z(n)\equiv \prod\limits_{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q{3}})(-\frac{2n}{p})B_{p-3}\pmod{p{\alpha}}. \end{eqnarray}