Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some q-analogues of supercongruences of Rodriguez-Villegas (1401.5978v2)

Published 23 Jan 2014 in math.NT and math.CO

Abstract: We study different q-analogues and generalizations of the ex-conjectures of Rodriguez-Villegas. For example, for any odd prime p, we show that the known congruence \sum_{k=0}{p-1}\frac{{2k\choose k}2}{16k} \equiv (-1){\frac{p-1}{2}}\pmod{p2} has the following two nice q-analogues with [p]=1+q+...+q{p-1}: \sum_{k=0}{p-1}\frac{(q;q2)_k2}{(q2;q2)_k2}q{(1+\varepsilon)k} &\equiv (-1){\frac{p-1}{2}}q{\frac{(p2-1)\varepsilon}{4}}\pmod{[p]2}, where (a;q)_0=1, (a;q)_n=(1-a)(1-aq)...(1-aq{n-1}) for n=1,2,..., and \varepsilon=\pm1. Several related conjectures are also proposed.

Summary

We haven't generated a summary for this paper yet.