Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of a congruence on sums of powers of $q$-binomial coefficients (1504.05482v1)

Published 20 Apr 2015 in math.NT and math.CO

Abstract: We prove that, if $m,n\geqslant 1$ and $a_1,\ldots,a_m$ are nonnegative integers, then \begin{align*} \frac{[a_1+\cdots+a_m+1]!}{[a_1]!\ldots[a_m]!}\sum{n-1}{h=0}qh\prod{i=1}m{h\brack a_i} \equiv 0\pmod{[n]}, \end{align*} where $[n]=\frac{1-qn}{1-q}$, $[n]!=[n][n-1]\cdots[1]$, and ${a\brack b}=\prod_{k=1}b\frac{1-q{a-k+1}}{1-qk}$. The $a_1=\cdots=a_m$ case confirms a recent conjecture of Z.-W. Sun. We also show that, if $p>\max{a,b}$ is a prime, then \begin{align*} \frac{[a+b+1]!}{[a]![b]!}\sum_{h=0}{p-1}qh{h\brack a}{h\brack b} \equiv (-1){a-b} q{ab-{a\choose 2}-{b\choose 2}}[p]\pmod{[p]2}. \end{align*}

Summary

We haven't generated a summary for this paper yet.