Matrix product ensembles of Hermite-type and the hyperbolic Harish-Chandra-Itzykson-Zuber integral (1702.07100v2)
Abstract: We investigate spectral properties of a Hermitised random matrix product which, contrary to previous product ensembles, allows for eigenvalues on the full real line. We prove that the eigenvalues form a bi-orthogonal ensemble, which reduces asymptotically to the Hermite Muttalib-Borodin ensemble. Explicit expressions for the bi-orthogonal functions as well as the correlation kernel are provided. Scaling the latter near the origin gives a limiting kernel involving Meijer G-functions, and the functional form of the global density is calculated. As a part of this study, we introduce a new matrix transformation which maps the space of polynomial ensembles onto itself. This matrix transformation is closely related to the so-called hyperbolic Harish-Chandra-Itzykson-Zuber integral.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.