Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual Multi-modal Embeddings for Natural Language Processing (1702.01101v1)

Published 3 Feb 2017 in cs.CL

Abstract: We propose a novel discriminative model that learns embeddings from multilingual and multi-modal data, meaning that our model can take advantage of images and descriptions in multiple languages to improve embedding quality. To that end, we introduce a modification of a pairwise contrastive estimation optimisation function as our training objective. We evaluate our embeddings on an image-sentence ranking (ISR), a semantic textual similarity (STS), and a neural machine translation (NMT) task. We find that the additional multilingual signals lead to improvements on both the ISR and STS tasks, and the discriminative cost can also be used in re-ranking $n$-best lists produced by NMT models, yielding strong improvements.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Iacer Calixto (25 papers)
  2. Qun Liu (230 papers)
  3. Nick Campbell (3 papers)
Citations (19)