Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Convolutional Neural Network for Risk Prediction with Medical Feature Embedding (1701.07474v1)

Published 25 Jan 2017 in cs.LG and stat.ML

Abstract: The widespread availability of electronic health records (EHRs) promises to usher in the era of personalized medicine. However, the problem of extracting useful clinical representations from longitudinal EHR data remains challenging. In this paper, we explore deep neural network models with learned medical feature embedding to deal with the problems of high dimensionality and temporality. Specifically, we use a multi-layer convolutional neural network (CNN) to parameterize the model and is thus able to capture complex non-linear longitudinal evolution of EHRs. Our model can effectively capture local/short temporal dependency in EHRs, which is beneficial for risk prediction. To account for high dimensionality, we use the embedding medical features in the CNN model which hold the natural medical concepts. Our initial experiments produce promising results and demonstrate the effectiveness of both the medical feature embedding and the proposed convolutional neural network in risk prediction on cohorts of congestive heart failure and diabetes patients compared with several strong baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhengping Che (41 papers)
  2. Yu Cheng (354 papers)
  3. Zhaonan Sun (7 papers)
  4. Yan Liu (419 papers)
Citations (56)