Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Copy-Augmented Sequence-to-Sequence Architecture Gives Good Performance on Task-Oriented Dialogue (1701.04024v3)

Published 15 Jan 2017 in cs.CL and cs.AI

Abstract: Task-oriented dialogue focuses on conversational agents that participate in user-initiated dialogues on domain-specific topics. In contrast to chatbots, which simply seek to sustain open-ended meaningful discourse, existing task-oriented agents usually explicitly model user intent and belief states. This paper examines bypassing such an explicit representation by depending on a latent neural embedding of state and learning selective attention to dialogue history together with copying to incorporate relevant prior context. We complement recent work by showing the effectiveness of simple sequence-to-sequence neural architectures with a copy mechanism. Our model outperforms more complex memory-augmented models by 7% in per-response generation and is on par with the current state-of-the-art on DSTC2.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mihail Eric (14 papers)
  2. Christopher D. Manning (169 papers)
Citations (155)