Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Boosting Dictionary Learning with Error Codes (1701.04018v1)

Published 15 Jan 2017 in cs.CV

Abstract: In conventional sparse representations based dictionary learning algorithms, initial dictionaries are generally assumed to be proper representatives of the system at hand. However, this may not be the case, especially in some systems restricted to random initializations. Therefore, a supposedly optimal state-update based on such an improper model might lead to undesired effects that will be conveyed to successive iterations. In this paper, we propose a dictionary learning method which includes a general feedback process that codes the intermediate error left over from a less intensive initial learning attempt, and then adjusts sparse codes accordingly. Experimental observations show that such an additional step vastly improves rates of convergence in high-dimensional cases, also results in better converged states in the case of random initializations. Improvements also scale up with more lenient sparsity constraints.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.