Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Dictionaries with Bounded Self-Coherence (1205.6210v2)

Published 28 May 2012 in stat.ML and cs.LG

Abstract: Sparse coding in learned dictionaries has been established as a successful approach for signal denoising, source separation and solving inverse problems in general. A dictionary learning method adapts an initial dictionary to a particular signal class by iteratively computing an approximate factorization of a training data matrix into a dictionary and a sparse coding matrix. The learned dictionary is characterized by two properties: the coherence of the dictionary to observations of the signal class, and the self-coherence of the dictionary atoms. A high coherence to the signal class enables the sparse coding of signal observations with a small approximation error, while a low self-coherence of the atoms guarantees atom recovery and a more rapid residual error decay rate for the sparse coding algorithm. The two goals of high signal coherence and low self-coherence are typically in conflict, therefore one seeks a trade-off between them, depending on the application. We present a dictionary learning method with an effective control over the self-coherence of the trained dictionary, enabling a trade-off between maximizing the sparsity of codings and approximating an equiangular tight frame.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Christian D. Sigg (1 paper)
  2. Tomas Dikk (1 paper)
  3. Joachim M. Buhmann (47 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.