Papers
Topics
Authors
Recent
2000 character limit reached

Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE? (1612.09415v2)

Published 30 Dec 2016 in math.ST and stat.TH

Abstract: Nearly all estimators in statistical prediction come with an associated tuning parameter, in one way or another. Common practice, given data, is to choose the tuning parameter value that minimizes a constructed estimate of the prediction error of the estimator; we focus on Stein's unbiased risk estimator, or SURE (Stein, 1981; Efron, 1986) which forms an unbiased estimate of the prediction error by augmenting the observed training error with an estimate of the degrees of freedom of the estimator. Parameter tuning via SURE minimization has been advocated by many authors, in a wide variety of problem settings, and in general, it is natural to ask: what is the prediction error of the SURE-tuned estimator? An obvious strategy would be simply use the apparent error estimate as reported by SURE, i.e., the value of the SURE criterion at its minimum, to estimate the prediction error of the SURE-tuned estimator. But this is no longer unbiased; in fact, we would expect that the minimum of the SURE criterion is systematically biased downwards for the true prediction error. In this paper, we formally describe and study this bias.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.