Limit distributions for KPZ growth models with spatially homogeneous random initial conditions (1611.06690v3)
Abstract: For stationary KPZ growth in 1+1 dimensions the height fluctuations are governed by the Baik-Rains distribution. Using the totally asymmetric single step growth model, alias TASEP, we investigate height fluctuations for a general class of spatially homogeneous random initial conditions. We prove that for TASEP there is a one-parameter family of limit distributions, labeled by the diffusion coefficient of the initial conditions. The distributions are defined through a variational formula. We use Monte Carlo simulations to obtain their numerical plots. Also discussed is the connection to the six-vertex model at its conical point.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.