Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A (2+1)-dimensional growth process with explicit stationary measures (1503.05339v3)

Published 18 Mar 2015 in math.PR, math-ph, and math.MP

Abstract: We introduce a class of (2+1)-dimensional stochastic growth processes, that can be seen as irreversible random dynamics of discrete interfaces. "Irreversible" means that the interface has an average non-zero drift. Interface configurations correspond to height functions of dimer coverings of the infinite hexagonal or square lattice. The model can also be viewed as an interacting driven particle system and in the totally asymmetric case the dynamics corresponds to an infinite collection of mutually interacting Hammersley processes. When the dynamical asymmetry parameter $(p-q)$ equals zero, the infinite-volume Gibbs measures $\pi_\rho$ (with given slope $\rho$) are stationary and reversible. When $p\ne q$, $\pi_\rho$ are not reversible any more but, remarkably, they are still stationary. In such stationary states, we find that the average height function at any given point $x$ grows linearly with time $t$ with a non-zero speed: $\mathbb E Q_x(t):=\mathbb E(h_x(t)-h_x(0))= V(\rho) t$ while the typical fluctuations of $Q_x(t)$ are smaller than any power of $t$ as $t\to\infty$. In the totally asymmetric case of $p=0,q=1$ and on the hexagonal lattice, the dynamics coincides with the "anisotropic KPZ growth model" introduced by A. Borodin and P. L. Ferrari. For a suitably chosen, "integrable", initial condition (that is very far from the stationary state), they were able to determine the hydrodynamic limit and a CLT for interface fluctuations on scale $\sqrt{\log t}$, exploiting the fact that in that case certain space-time height correlations can be computed exactly.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube