The relative exponential growth rate of subgroups of acylindrically hyperbolic groups (1611.06393v2)
Abstract: We introduce a new invariant of finitely generated groups, the ambiguity function, and prove that every finitely generated acylindrically hyperbolic group has a linearly bounded ambiguity function. We use this result to prove that the relative exponential growth rate $\lim \limits_{n \rightarrow \infty} \sqrt[n]{\vert B{X}_H(n) \vert}$ of a subgroup $H$ of an acylindrically hyperbolic group $G$ exists with respect to every finite generating set $X$ of $G$, if $H$ contains a loxodromic element of $G$. Further we prove that the relative exponential growth rate of every finitely generated subgroup $H$ of a right-angled Artin group $A_{\Gamma}$ exists with respect to every finite generating set of $A_{\Gamma}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.