Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Uniform growth in small cancellation groups (2405.14387v1)

Published 23 May 2024 in math.GR

Abstract: An open question asks whether every group acting acylindrically on a hyperbolic space has uniform exponential growth. We prove that the class of groups of uniform uniform exponential growth acting acylindrically on a hyperbolic space is closed under taking certain geometric small cancellation quotients. There are two consequences: firstly, there is a finitely generated acylindrically hyperbolic group that has uniform exponential growth but has arbitrarily large torsion balls. Secondly, the uniform uniform exponential growth rate of a classical $C''(\lambda)$-small cancellation group, for sufficiently small $\lambda$, is bounded from below by a universal positive constant. We give a similar result for uniform entropy-cardinality estimates. This yields an explicit upper bound on the isomorphism class of marked $\delta$-hyperbolic $C''(\lambda)$-small cancellation groups of uniformly bounded entropy in terms of $\delta$ and the entropy bound.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube