Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Modal Graph-Based Semi-Supervised Pipeline for Predicting Cancer Survival (1611.05751v1)

Published 17 Nov 2016 in cs.LG and stat.ML

Abstract: Cancer survival prediction is an active area of research that can help prevent unnecessary therapies and improve patient's quality of life. Gene expression profiling is being widely used in cancer studies to discover informative biomarkers that aid predict different clinical endpoint prediction. We use multiple modalities of data derived from RNA deep-sequencing (RNA-seq) to predict survival of cancer patients. Despite the wealth of information available in expression profiles of cancer tumors, fulfilling the aforementioned objective remains a big challenge, for the most part, due to the paucity of data samples compared to the high dimension of the expression profiles. As such, analysis of transcriptomic data modalities calls for state-of-the-art big-data analytics techniques that can maximally use all the available data to discover the relevant information hidden within a significant amount of noise. In this paper, we propose a pipeline that predicts cancer patients' survival by exploiting the structure of the input (manifold learning) and by leveraging the unlabeled samples using Laplacian support vector machines, a graph-based semi supervised learning (GSSL) paradigm. We show that under certain circumstances, no single modality per se will result in the best accuracy and by fusing different models together via a stacked generalization strategy, we may boost the accuracy synergistically. We apply our approach to two cancer datasets and present promising results. We maintain that a similar pipeline can be used for predictive tasks where labeled samples are expensive to acquire.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hamid Reza Hassanzadeh (11 papers)
  2. John H. Phan (2 papers)
  3. May D. Wang (17 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.