Papers
Topics
Authors
Recent
2000 character limit reached

Massively-Parallel Similarity Join, Edge-Isoperimetry, and Distance Correlations on the Hypercube (1611.04999v1)

Published 15 Nov 2016 in cs.DS, cs.CC, and cs.DC

Abstract: We study distributed protocols for finding all pairs of similar vectors in a large dataset. Our results pertain to a variety of discrete metrics, and we give concrete instantiations for Hamming distance. In particular, we give improved upper bounds on the overhead required for similarity defined by Hamming distance $r>1$ and prove a lower bound showing qualitative optimality of the overhead required for similarity over any Hamming distance $r$. Our main conceptual contribution is a connection between similarity search algorithms and certain graph-theoretic quantities. For our upper bounds, we exhibit a general method for designing one-round protocols using edge-isoperimetric shapes in similarity graphs. For our lower bounds, we define a new combinatorial optimization problem, which can be stated in purely graph-theoretic terms yet also captures the core of the analysis in previous theoretical work on distributed similarity joins. As one of our main technical results, we prove new bounds on distance correlations in subsets of the Hamming cube.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.