Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric Indexing for Graph Similarity Search (2110.01283v1)

Published 4 Oct 2021 in cs.DB

Abstract: Finding the graphs that are most similar to a query graph in a large database is a common task with various applications. A widely-used similarity measure is the graph edit distance, which provides an intuitive notion of similarity and naturally supports graphs with vertex and edge attributes. Since its computation is NP-hard, techniques for accelerating similarity search have been studied extensively. However, index-based approaches for this are almost exclusively designed for graphs with categorical vertex and edge labels and uniform edit costs. We propose a filter-verification framework for similarity search, which supports non-uniform edit costs for graphs with arbitrary attributes. We employ an expensive lower bound obtained by solving an optimal assignment problem. This filter distance satisfies the triangle inequality, making it suitable for acceleration by metric indexing. In subsequent stages, assignment-based upper bounds are used to avoid further exact distance computations. Our extensive experimental evaluation shows that a significant runtime advantage over both a linear scan and state-of-the-art methods is achieved.

Citations (3)

Summary

We haven't generated a summary for this paper yet.