Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A mixed variational discretization for non-isothermal compressible flow in pipelines (1611.03368v1)

Published 10 Nov 2016 in math.NA

Abstract: We consider the non-isothermal flow of a compressible fluid through pipes. Starting from the full set of Euler equations, we propose a variational characterization of solutions that encodes the conservation of mass, energy, and entropy in a very direct manner. This variational principle is suitable for a conforming Galerkin approximation in space which automatically inherits the basic physical conservation laws. Three different spaces are used for approximation of density, mass flux, and temperature, and we consider a mixed finite element method as one possible choice of suitable approximation spaces. We also investigate the subsequent discretization in time by a problem adapted implicit time stepping scheme for which exact conservation of mass as well as a slight dissipation of energy and increase of entropy are proven which are due to the numerical dissipation of the implicit time discretization. The main arguments of our analysis are rather general and allow us to extend the approach with minor modification to more general boundary conditions and flow models taking into account friction, viscosity, heat conduction, and heat exchange with the surrounding medium.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube