2000 character limit reached
The Effects of Data Size and Frequency Range on Distributional Semantic Models
Published 27 Sep 2016 in cs.CL | (1609.08293v1)
Abstract: This paper investigates the effects of data size and frequency range on distributional semantic models. We compare the performance of a number of representative models for several test settings over data of varying sizes, and over test items of various frequency. Our results show that neural network-based models underperform when the data is small, and that the most reliable model over data of varying sizes and frequency ranges is the inverted factorized model.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.