Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Character-level Convolutional Neural Network for Distinguishing Similar Languages and Dialects (1609.07568v1)

Published 24 Sep 2016 in cs.CL

Abstract: Discriminating between closely-related language varieties is considered a challenging and important task. This paper describes our submission to the DSL 2016 shared-task, which included two sub-tasks: one on discriminating similar languages and one on identifying Arabic dialects. We developed a character-level neural network for this task. Given a sequence of characters, our model embeds each character in vector space, runs the sequence through multiple convolutions with different filter widths, and pools the convolutional representations to obtain a hidden vector representation of the text that is used for predicting the language or dialect. We primarily focused on the Arabic dialect identification task and obtained an F1 score of 0.4834, ranking 6th out of 18 participants. We also analyze errors made by our system on the Arabic data in some detail, and point to challenges such an approach is faced with.

Citations (36)

Summary

We haven't generated a summary for this paper yet.