Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Derivative Delay Embedding: Online Modeling of Streaming Time Series (1609.07540v1)

Published 24 Sep 2016 in cs.LG

Abstract: The staggering amount of streaming time series coming from the real world calls for more efficient and effective online modeling solution. For time series modeling, most existing works make some unrealistic assumptions such as the input data is of fixed length or well aligned, which requires extra effort on segmentation or normalization of the raw streaming data. Although some literature claim their approaches to be invariant to data length and misalignment, they are too time-consuming to model a streaming time series in an online manner. We propose a novel and more practical online modeling and classification scheme, DDE-MGM, which does not make any assumptions on the time series while maintaining high efficiency and state-of-the-art performance. The derivative delay embedding (DDE) is developed to incrementally transform time series to the embedding space, where the intrinsic characteristics of data is preserved as recursive patterns regardless of the stream length and misalignment. Then, a non-parametric Markov geographic model (MGM) is proposed to both model and classify the pattern in an online manner. Experimental results demonstrate the effectiveness and superior classification accuracy of the proposed DDE-MGM in an online setting as compared to the state-of-the-art.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.