Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decoupled Asynchronous Proximal Stochastic Gradient Descent with Variance Reduction

Published 22 Sep 2016 in cs.LG and math.OC | (1609.06804v2)

Abstract: In the era of big data, optimizing large scale machine learning problems becomes a challenging task and draws significant attention. Asynchronous optimization algorithms come out as a promising solution. Recently, decoupled asynchronous proximal stochastic gradient descent (DAP-SGD) is proposed to minimize a composite function. It is claimed to be able to off-loads the computation bottleneck from server to workers by allowing workers to evaluate the proximal operators, therefore, server just need to do element-wise operations. However, it still suffers from slow convergence rate because of the variance of stochastic gradient is nonzero. In this paper, we propose a faster method, decoupled asynchronous proximal stochastic variance reduced gradient descent method (DAP-SVRG). We prove that our method has linear convergence for strongly convex problem. Large-scale experiments are also conducted in this paper, and results demonstrate our theoretical analysis.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.