Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Geometrically Convergent Distributed Optimization with Uncoordinated Step-Sizes (1609.05877v1)

Published 19 Sep 2016 in math.OC, cs.SY, and stat.ML

Abstract: A recent algorithmic family for distributed optimization, DIGing's, have been shown to have geometric convergence over time-varying undirected/directed graphs. Nevertheless, an identical step-size for all agents is needed. In this paper, we study the convergence rates of the Adapt-Then-Combine (ATC) variation of the DIGing algorithm under uncoordinated step-sizes. We show that the ATC variation of DIGing algorithm converges geometrically fast even if the step-sizes are different among the agents. In addition, our analysis implies that the ATC structure can accelerate convergence compared to the distributed gradient descent (DGD) structure which has been used in the original DIGing algorithm.

Citations (136)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.