Games for Topological Fixpoint Logic (1609.04088v1)
Abstract: Topological fixpoint logics are a family of logics that admits topological models and where the fixpoint operators are defined with respect to the topological interpretations. Here we consider a topological fixpoint logic for relational structures based on Stone spaces, where the fixpoint operators are interpreted via clopen sets. We develop a game-theoretic semantics for this logic. First we introduce games characterising clopen fixpoints of monotone operators on Stone spaces. These fixpoint games allow us to characterise the semantics for our topological fixpoint logic using a two-player graph game. Adequacy of this game is the main result of our paper. Finally, we define bisimulations for the topological structures under consideration and use our game semantics to prove that the truth of a formula of our topological fixpoint logic is bisimulation-invariant.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.