Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Generation of Time-based Label Refinements (1609.03333v1)

Published 12 Sep 2016 in stat.ME, cs.AI, and stat.ML

Abstract: Process mining is a research field focused on the analysis of event data with the aim of extracting insights in processes. Applying process mining techniques on data from smart home environments has the potential to provide valuable insights in (un)healthy habits and to contribute to ambient assisted living solutions. Finding the right event labels to enable application of process mining techniques is however far from trivial, as simply using the triggering sensor as the label for sensor events results in uninformative models that allow for too much behavior (overgeneralizing). Refinements of sensor level event labels suggested by domain experts have shown to enable discovery of more precise and insightful process models. However, there exist no automated approach to generate refinements of event labels in the context of process mining. In this paper we propose a framework for automated generation of label refinements based on the time attribute of events. We show on a case study with real life smart home event data that behaviorally more specific, and therefore more insightful, process models can be found by using automatically generated refined labels in process discovery.

Citations (12)

Summary

We haven't generated a summary for this paper yet.