Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Malliavin derivative and compactness: application to a degenerate PDE-SDE coupling (1609.01495v2)

Published 6 Sep 2016 in math.AP

Abstract: Compactness is one of the most versatile tools in the analysis of nonlinear PDEs and systems. Usually, compactness is established by means of some embedding theorem between functional spaces. Such theorems, in turn, rely on appropriate estimates for a function and its derivatives. While a similar result based on simultaneous estimates for the Malliavin and weak Sobolev derivatives is available for the Wiener-Sobolev spaces, it seems that it has not yet been widely used in the analysis of highly nonlinear parabolic problems with stochasticity. In the present work we apply this result in order to study compactness, existence of global solutions, and, as a by-product, the convergence of a semi-discretisation scheme for a prototypical degenerate PDE-SDE coupling.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube