Papers
Topics
Authors
Recent
2000 character limit reached

Topological recursion on the Bessel curve

Published 9 Aug 2016 in math-ph, math.CO, and math.MP | (1608.02781v1)

Abstract: The Witten-Kontsevich theorem states that a certain generating function for intersection numbers on the moduli space of stable curves is a tau-function for the KdV integrable hierarchy. This generating function can be recovered via the topological recursion applied to the Airy curve $x=\frac{1}{2}y2$. In this paper, we consider the topological recursion applied to the irregular spectral curve $xy2=\frac{1}{2}$, which we call the Bessel curve. We prove that the associated partition function is also a KdV tau-function, which satisfies Virasoro constraints, a cut-and-join type recursion, and a quantum curve equation. Together, the Airy and Bessel curves govern the local behaviour of all spectral curves with simple branch points.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.