Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantization of spectral curves for meromorphic Higgs bundles through topological recursion (1411.1023v2)

Published 4 Nov 2014 in math.AG, math-ph, math.MP, and math.QA

Abstract: A geometric quantization using the topological recursion is established for the compactified cotangent bundle of a smooth projective curve of an arbitrary genus. In this quantization, the Hitchin spectral curve of a rank $2$ meromorphic Higgs bundle on the base curve corresponds to a quantum curve, which is a Rees $D$-module on the base. The topological recursion then gives an all-order asymptotic expansion of its solution, thus determining a state vector corresponding to the spectral curve as a meromorphic Lagrangian. We establish a generalization of the topological recursion for a singular spectral curve. We show that the partial differential equation version of the topological recursion automatically selects the normal ordering of the canonical coordinates, and determines the unique quantization of the spectral curve. The quantum curve thus constructed has the semi-classical limit that agrees with the original spectral curve. Typical examples of our construction includes classical differential equations, such as Airy, Hermite, and Gau\ss\ hypergeometric equations. The topological recursion gives an asymptotic expansion of solutions to these equations at their singular points, relating Higgs bundles and various quantum invariants.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.