Quasi-interpolation on a sparse grid with Gaussian (1608.00728v1)
Abstract: Motivated by the recent multilevel sparse kernel-based interpolation (MuSIK) algorithm proposed in [Georgoulis, Levesley and Subhan, SIAM J. Sci. Comput., 35(2), pp. A815-A831, 2013], we introduce the new quasi-multilevel sparse interpolation with kernels (Q-MuSIK) via the combination technique. The Q-MuSIK scheme achieves better convergence and run time in comparison with classical quasi-interpolation; namely, the Q-MuSIK algorithm is generally superior to the MuSIK methods in terms of run time in particular in high-dimensional interpolation problems, since there is no need to solve large algebraic systems. We subsequently propose a fast, low complexity, high-dimensional quadrature formula based on Q-MuSIK interpolation of the integrand. We present the results of numerical experimentation for both interpolation and quadrature in high dimension.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.