Papers
Topics
Authors
Recent
Search
2000 character limit reached

Synchronization Patterns: From Network Motifs to Hierarchical Networks

Published 29 Jul 2016 in nlin.AO and nlin.PS | (1607.08798v2)

Abstract: We investigate complex synchronization patterns such as cluster synchronization and partial amplitude death in networks of coupled Stuart-Landau oscillators with fractal connectivities. The study of fractal or self-similar topology is motivated by the network of neurons in the brain. This fractal property is well represented in hierarchical networks, for which we present three different models. In addition, we introduce an analytical eigensolution method and provide a comprehensive picture of the interplay of network topology and the corresponding network dynamics, thus allowing us to predict the dynamics of arbitrarily large hierarchical networks simply by analyzing small network motifs. We also show that oscillation death can be induced in these networks, even if the coupling is symmetric, contrary to previous understanding of oscillation death. Our results show that there is a direct correlation between topology and dynamics: Hierarchical networks exhibit the corresponding hierarchical dynamics. This helps bridging the gap between mesoscale motifs and macroscopic networks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.