Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calorie Counter: RGB-Depth Visual Estimation of Energy Expenditure at Home (1607.08196v1)

Published 27 Jul 2016 in cs.CV

Abstract: We present a new framework for vision-based estimation of calorific expenditure from RGB-D data - the first that is validated on physical gas exchange measurements and applied to daily living scenarios. Deriving a person's energy expenditure from sensors is an important tool in tracking physical activity levels for health and lifestyle monitoring. Most existing methods use metabolic lookup tables (METs) for a manual estimate or systems with inertial sensors which ultimately require users to wear devices. In contrast, the proposed pose-invariant and individual-independent vision framework allows for a remote estimation of calorific expenditure. We introduce, and evaluate our approach on, a new dataset called SPHERE-calorie, for which visual estimates can be compared against simultaneously obtained, indirect calorimetry measures based on gas exchange. % based on per breath gas exchange. We conclude from our experiments that the proposed vision pipeline is suitable for home monitoring in a controlled environment, with calorific expenditure estimates above accuracy levels of commonly used manual estimations via METs. With the dataset released, our work establishes a baseline for future research for this little-explored area of computer vision.

Citations (15)

Summary

We haven't generated a summary for this paper yet.