Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minmax Tree Facility Location and Sink Evacuation with Dynamic Confluent Flows

Published 27 Jul 2016 in cs.DS | (1607.08041v1)

Abstract: Let $G=(V,E)$ be a graph modelling a building or road network in which edges have-both travel times (lengths) and capacities associated with them. An edge's capacity is the number of people that can enter that edge in a unit of time. In emergencies, people evacuate towards the exits. If too many people try to evacuate through the same edge, congestion builds up and slows down the evacuation. Graphs with both lengths and capacities are known as Dynamic Flow networks. An evacuation plan for $G$ consists of a choice of exit locations and a partition of the people at the vertices into groups, with each group evacuating to the same exit. The evacuation time of a plan is the time it takes until the last person evacuates. The $k$-sink evacuation problem is to provide an evacuation plan with $k$ exit locations that minimizes the evacuation time. It is known that this problem is NP-Hard for general graphs but no polynomial time algorithm was previously known even for the case of $G$ a tree. This paper presents an $O(n k2 \log5 n)$ algorithm for the $k$-sink evacuation problem on trees. Our algorithms also apply to a more general class of problems, which we call minmax tree facility location.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.