Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Linear Time Algorithms for Minsum $k$-Sink Problems on Dynamic Flow Path Networks (2010.05729v1)

Published 12 Oct 2020 in cs.DS

Abstract: We address the facility location problems on dynamic flow path networks. A dynamic flow path network consists of an undirected path with positive edge lengths, positive edge capacities, and positive vertex weights. A path can be considered as a road, an edge length as the distance along the road and a vertex weight as the number of people at the site. An edge capacity limits the number of people that can enter the edge per unit time. In the dynamic flow network, given particular points on edges or vertices, called sinks, all the people evacuate from the vertices to the sinks as quickly as possible. The problem is to find the location of sinks on a dynamic flow path network in such a way that the aggregate evacuation time (i.e., the sum of evacuation times for all the people) to sinks is minimized. We consider two models of the problem: the confluent flow model and the non-confluent flow model. In the former model, the way of evacuation is restricted so that all the people at a vertex have to evacuate to the same sink, and in the latter model, there is no such restriction. In this paper, for both the models, we develop algorithms which run in almost linear time regardless of the number of sinks. It should be stressed that for the confluent flow model, our algorithm improves upon the previous result by Benkoczi et al. [Theoretical Computer Science, 2020], and one for the non-confluent flow model is the first polynomial time algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.