Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Descriptors for Tracking by Detection: a Benchmark (1607.06178v1)

Published 21 Jul 2016 in cs.CV

Abstract: In this paper, we provide an extensive evaluation of the performance of local descriptors for tracking applications. Many different descriptors have been proposed in the literature for a wide range of application in computer vision such as object recognition and 3D reconstruction. More recently, due to fast key-point detectors, local image features can be used in online tracking frameworks. However, while much effort has been spent on evaluating their performance in terms of distinctiveness and robustness to image transformations, very little has been done in the contest of tracking. Our evaluation is performed in terms of distinctiveness, tracking precision and tracking speed. Our results show that binary descriptors like ORB or BRISK have comparable results to SIFT or AKAZE due to a higher number of key-points.

Citations (18)

Summary

We haven't generated a summary for this paper yet.