The higher twisted index theorem for foliations
Abstract: Given a gerbe $L$, on the holonomy groupoid $\mathcal G$ of the foliation $(M, \mathcal F)$, whose pull-back to $M$ is torsion, we construct a Connes $\Phi$-map from the twisted Dupont-Sullivan bicomplex of $\mathcal G$ to the cyclic complex of the $L$-projective leafwise smoothing operators on $(M, \mathcal F)$. Our construction allows to couple the $K$-theory analytic indices of $L$-projective leafwise elliptic operators with the twisted cohomology of $B\mathcal G$ producing scalar higher invariants. Finally by adapting the Bismut-Quillen superconnection approach, we compute these higher twisted indices as integrals over the ambiant manifold of the expected twisted characteristic classes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.