Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twisted longitudinal index theorem for foliations and wrong way functoriality (1005.3842v1)

Published 20 May 2010 in math.KT and math.GT

Abstract: For a Lie groupoid G with a twisting (a PU(H)-principal bundle over G), we use the (geometric) deformation quantization techniques supplied by Connes tangent groupoids to define an analytic index morphism in twisted K-theory. In the case the twisting is trivial we recover the analytic index morphism of the groupoid. For a smooth foliated manifold with twistings on the holonomy groupoid we prove the twisted analog of Connes-Skandalis longitudinal index theorem. When the foliation is given by fibers of a fibration, our index coincides with the one recently introduced by Mathai-Melrose-Singer. We construct the pushforward map in twisted K-theory associated to any smooth (generalized) map $f:W\longrightarrow M/F$ and a twisting $\sigma$ on the holonomy groupoid $M/F$, next we use the longitudinal index theorem to prove the functoriality of this construction. We generalize in this way the wrong way functoriality results of Connes-Skandalis when the twisting is trivial and of Carey-Wang for manifolds.

Summary

We haven't generated a summary for this paper yet.