Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Littlewood-Richardson coefficients for Grothendieck polynomials from integrability (1607.02396v1)

Published 8 Jul 2016 in math.CO, math-ph, math.AG, and math.MP

Abstract: We study the Littlewood-Richardson coefficients of double Grothendieck polynomials indexed by Grassmannian permutations. Geometrically, these are the structure constants of the equivariant $K$-theory ring of Grassmannians. Representing the double Grothendieck polynomials as partition functions of an integrable vertex model, we use its Yang-Baxter equation to derive a series of product rules for the former polynomials and their duals. The Littlewood-Richardson coefficients that arise can all be expressed in terms of puzzles without gashes, which generalize previous puzzles obtained by Knutson-Tao and Vakil.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube