Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Puzzle Ideals for Grassmannians (2407.10927v1)

Published 15 Jul 2024 in math.CO, cs.SC, and math.AC

Abstract: Puzzles are a versatile combinatorial tool to interpret the Littlewood-Richardson coefficients for Grassmannians. In this paper, we propose the concept of puzzle ideals whose varieties one-one correspond to the tilings of puzzles and present an algebraic framework to construct the puzzle ideals which works with the Knutson-Tao-Woodward puzzle and its $T$-equivariant and $K$-theoretic variants for Grassmannians. For puzzles for which one side is free, we propose the side-free puzzle ideals whose varieties one-one correspond to the tilings of side-free puzzles, and the elimination ideals of the side-free puzzle ideals contain all the information of the structure constants for Grassmannians with respect to the free side. Besides the underlying algebraic importance of the introduction of these puzzle ideals is the computational feasibility to find all the tilings of the puzzles for Grassmannians by solving the defining polynomial systems, demonstrated with illustrative puzzles via computation of Gr\"obner bases.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com