Papers
Topics
Authors
Recent
2000 character limit reached

An intrinsic hyperboloid approach for Einstein Klein-Gordon equations (1607.01466v1)

Published 6 Jul 2016 in math.AP, gr-qc, and math.DG

Abstract: In [7] Klainerman introduced the hyperboloidal method to prove the global existence results for nonlinear Klein-Gordon equations by using commuting vector fields. In this paper, we extend the hyperboloidal method from Minkowski space to Lorentzian spacetimes. This approach is developed in [14] for proving, under the maximal foliation gauge, the global nonlinear stability of Minkowski space for Einstein equations with massive scalar fields, which states that, the sufficiently small data in a compact domain, surrounded by a Schwarzschild metric, leads to a unique, globally hyperbolic, smooth and geodesically complete solution to the Einstein Klein-Gordon system. In this paper, we set up the geometric framework of the intrinsic hyperboloid approach in the curved spacetime. By performing a thorough geometric comparison between the radial normal vector field induced by the intrinsic hyperboloids and the canonical $\p_r$, we manage to control the hyperboloids when they are close to their asymptote, which is a light cone in the Schwarzschild zone. By using such geometric information, we not only obtain the crucial boundary information for running the energy method in [14], but also prove that the intrinsic geometric quantities including the Hawking mass all converge to their Schwarzschild values when approaching the asymptote.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.