Maurer-Cartan elements in the Lie models of finite simplicial complexes (1606.08794v2)
Abstract: In a previous work, we have associated a complete differential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we have also a realization functor from the category of complete differential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.