Uniqueness Trees: A Possible Polynomial Approach to the Graph Isomorphism Problem (1606.06399v1)
Abstract: This paper presents the novel `uniqueness tree' algorithm, as one possible method for determining whether two finite, undirected graphs are isomorphic. We prove that the algorithm has polynomial time complexity in the worst case, and that it will always detect the presence of an isomorphism whenever one exists. We also propose that the algorithm will equivalently discern the lack of an isomorphism whenever one does not exist, and some initial justifications are given for this proposition, although it cannot yet be rigorously proven. Finally, we present experimental evidence for both the effectiveness and efficiency of the uniqueness tree method, using data gathered from a practical implementation of the algorithm. Some consequences and directions for further research are discussed.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.