Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Hierarchical Reinforcement Learning Method for Persistent Time-Sensitive Tasks (1606.06355v1)

Published 20 Jun 2016 in cs.AI

Abstract: Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training cases

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.