Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Sparsely Connected and Disjointly Trained Deep Neural Networks for Low Resource Behavioral Annotation: Acoustic Classification in Couples' Therapy (1606.04518v1)

Published 14 Jun 2016 in cs.LG and cs.NE

Abstract: Observational studies are based on accurate assessment of human state. A behavior recognition system that models interlocutors' state in real-time can significantly aid the mental health domain. However, behavior recognition from speech remains a challenging task since it is difficult to find generalizable and representative features because of noisy and high-dimensional data, especially when data is limited and annotated coarsely and subjectively. Deep Neural Networks (DNN) have shown promise in a wide range of machine learning tasks, but for Behavioral Signal Processing (BSP) tasks their application has been constrained due to limited quantity of data. We propose a Sparsely-Connected and Disjointly-Trained DNN (SD-DNN) framework to deal with limited data. First, we break the acoustic feature set into subsets and train multiple distinct classifiers. Then, the hidden layers of these classifiers become parts of a deeper network that integrates all feature streams. The overall system allows for full connectivity while limiting the number of parameters trained at any time and allows convergence possible with even limited data. We present results on multiple behavior codes in the couples' therapy domain and demonstrate the benefits in behavior classification accuracy. We also show the viability of this system towards live behavior annotations.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.