Application of Facial Reduction to $H_\infty$ State Feedback Control Problem (1606.03529v1)
Abstract: One often encounters numerical difficulties in solving linear matrix inequality (LMI) problems obtained from $H_\infty$ control problems. We discuss the reason from the viewpoint of optimization, and provide necessary and sufficient conditions for LMI problem and its dual not to be strongly feasible. Moreover, we interpret them in terms of control system. In this analysis, facial reduction, which was proposed by Borwein and Wolkowicz, plays an important role. We show that a necessary and sufficient condition closely related to the existence of invariant zeros in the closed left-half plane in the system, and present a way to remove the numerical difficulty with the null vectors associated with invariant zeros in the closed left-half plane. Numerical results show that the numerical stability is improved by applying it.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.