Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Asynchronous Multi-Agent Primal-Dual Optimization (1606.01993v2)

Published 7 Jun 2016 in math.OC

Abstract: We present a framework for asynchronously solving convex optimization problems over networks of agents which are augmented by the presence of a centralized cloud computer. This framework uses a Tikhonov-regularized primal-dual approach in which the agents update the system's primal variables and the cloud updates its dual variables. To minimize coordination requirements placed upon the system, the times of communications and computations among the agents are allowed to be arbitrary, provided they satisfy mild conditions. Communications from the agents to the cloud are likewise carried out without any coordination in their timing. However, we require that the cloud keep the dual variable's value synchronized across the agents, and a counterexample is provided that demonstrates that this level of synchrony is indeed necessary for convergence. Convergence rate estimates are provided in both the primal and dual spaces, and simulation results are presented that demonstrate the operation and convergence of the proposed algorithm.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com