Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Regression with Adaptive Huber Loss (1606.01568v2)

Published 5 Jun 2016 in cs.LG and cs.CV

Abstract: This paper addresses the scalar regression problem through a novel solution to exactly optimize the Huber loss in a general semi-supervised setting, which combines multi-view learning and manifold regularization. We propose a principled algorithm to 1) avoid computationally expensive iterative schemes while 2) adapting the Huber loss threshold in a data-driven fashion and 3) actively balancing the use of labelled data to remove noisy or inconsistent annotations at the training stage. In a wide experimental evaluation, dealing with diverse applications, we assess the superiority of our paradigm which is able to combine robustness towards noise with both strong performance and low computational cost.

Citations (13)

Summary

We haven't generated a summary for this paper yet.